If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4=192
We move all terms to the left:
x^2+4-(192)=0
We add all the numbers together, and all the variables
x^2-188=0
a = 1; b = 0; c = -188;
Δ = b2-4ac
Δ = 02-4·1·(-188)
Δ = 752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{752}=\sqrt{16*47}=\sqrt{16}*\sqrt{47}=4\sqrt{47}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{47}}{2*1}=\frac{0-4\sqrt{47}}{2} =-\frac{4\sqrt{47}}{2} =-2\sqrt{47} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{47}}{2*1}=\frac{0+4\sqrt{47}}{2} =\frac{4\sqrt{47}}{2} =2\sqrt{47} $
| 3q+6=2q | | x=14-6+8 | | 0=-2(1+n) | | -7=z+6 | | 6(3x-1)-30=3(2x-4) | | -176=-11p | | -20=-2(x+4) | | 3(x-5)+4=-5 | | 1=1/h | | x/8=(x+4) | | 20+4y=120 | | 10z+8=9z | | -1=-4+s | | 3.60q+25.20=4.50(q+4) | | 6p-7=28 | | 13x+5=26=5=31 | | 24-13x+5=30+5-3x | | 4(6x+1)-3(2x-3)+4x6=51 | | -3=-4+h | | 3/2x-5=19 | | -9f=-10f+6 | | 1x+33=4x-12 | | 3(3x+6)=5x+2 | | 4=-7+b | | 10=m-3 | | 14=8i-i | | 1=2v-3 | | -3x+2x-4x=0 | | 5=10l-9l | | n-19=-2 | | 9(4+8b)=20 | | -3x+4=-12-7x |